Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 665: 545-553, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547635

RESUMO

Organic multi-stimulus-responsive materials are widely used in anti-counterfeiting and information encryption due to their unique response characteristics and designability. However, progress in obtaining multi-stimulus-responsive smart materials has been very slow. Herein, a spiropyran derivative is constructed, which shows photochromic, thermochromic and mechanical photochromic properties, and has reversible absorption/luminescence adjustment ability. By introducing non-covalent interactions such as van der Waals force and hydrogen bond, this new molecule is more sensitive to external stimuli and exhibits better photochromic, mechanochromic and thermochromic properties with rapid speed and high contrast. Furthermore, these three stimulus responses can be completely restored to the initial state under white light irradiation. The reversible multiple response characteristics of this molecule make it possible to provide dynamic anti-counterfeiting and advanced information encryption capabilities. To demonstrate its application in advanced information encryption, powders treated with different stimuli are combined with fluorescent dyes to encrypt complex digital information. This work puts forward a new time-resolved encryption strategy, which provides important guidance for the development of time-resolved information security materials.

2.
ACS Appl Mater Interfaces ; 16(12): 15096-15106, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478831

RESUMO

With the progress of forgery and decryption, the traditional encryption technology is apparent not enough, which strongly requires the development of advanced multidimensional encryption strategies and technologies. Photo-stimuli responsive fluorescent materials are promising as candidate materials for advanced information encryption. Here, we have reported new photo-stimuli responsive materials by encapsulating photochromic molecules spiropyrans (SPs) into naphthalimide-functionalized silica aerogels. By introducing different modification groups (dimethylamino) into 1,8-naphthalimide, we obtained two kinds of silica aerogels that emit blue and green colors. The naphthalimide-functionalized silica aerogels/dye composite exhibits a blue (dimethylamino-modified naphthalimide-functionalized silica aerogel showing green) emission from naphthalimide of silica aerogels at 450 nm (520 nm) and a red emission around 650 nm of SP. Under exposure to ultraviolet light, SP gradually transformed into the merocyanine (MC) form, and a strong absorption band appeared near 540 nm. At that time, the fluorescence resonance energy-transfer (FRET) process occurred between naphthalimide and the MC isomer. As the irradiation time is extended, the fluorescence color changes continuously from blue (green) to red through the FRET process. Using the time dependence of fluorescence, dynamic encryption patterns and multiple codes were successfully developed based on these functionalized silica aerogels. This work has provided important guidance for designing advanced information encryption materials.

3.
ACS Omega ; 8(18): 16459-16470, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179600

RESUMO

Here, we report a novel invisible ink with different decay times based on thin films with different molar ratios of spiropyran (SP)/Si, which allows the encryption of messages over time. Nanoporous silica has been found to be an excellent substrate to improve the solid photochromism of spiropyran, but the hydroxyl groups of silica have a serious effect on fade speeds. The density of silanol groups in silica has an influence on the switching behavior of spiropyran molecules, as they stabilize the amphiphilic merocyanine isomers and thus slow down the fading process from the open to the closed form. Here, we investigate the solid photochromic behavior of spiropyran by sol-gel modification of the silanol groups and explore its potential application in UV printing and dynamic anticounterfeiting. To extend its applications, spiropyran is embedded in organically modified thin films prepared by the sol-gel method. Notably, by using the different decay times of thin films with different SP/Si molar ratios, time-dependent information encryption can be realized. It provides an initial "false" code, which does not display the required information, and only after a given time will the encrypted data appear.

4.
ACS Appl Mater Interfaces ; 14(42): 48133-48142, 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36251800

RESUMO

Developing smart fluorescent materials having very advanced levels, showing dynamic displays of encrypted messaging, remains a huge challenge. In this paper, we present a unique method based on combining a common photochromic molecule spiropyran (SP) with hydrogen-bonded organic frameworks (HOFs), which allows for reversible switching of SP in solid states and shows dynamic displays of encrypted information. With the irradiation time extended, the fluorescence emission undergo an evident transformation from yellow-green to orange to red, because of the fluorescence resonance energy transfer (FRET) process between the unique HOFs and merocyanine (MC) isomer. By doping with polydimethylsiloxane (PDMS), we obtained free-standing membranes with high flexibility and mechanical strength, which can be reversibly and repeatedly bent and folded at angles of >90°. Notably, the comparison of fatigue resistance between SP2/PDMS (can be used for no more than 5 times) and SP2 ⊂ HOF2/PDMS (can be used for more than 100 times) further proved the importance of HOFs. This composite system has many advantages: (1) it has diverse dynamic fluorescence emission and visible colors regulated by ultraviolet radiation with high contrast and can be reversibly converted; (2) these changes in behavior can be achieved by simple UV illumination; and (3) compared with previous work, this work not only shows the dynamic fluorescence emission, but also shows the dynamic information during the decryption.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...